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ABSTRACT

The research described in this report has investigated methods for pre-
dicting optimal mean square estimation error in nonlinear estimation problems
associated with passive acoustic tracking. The objective was to develop per-
formance prediction methods that are computationally efficient, applicable
to realistic passive tracking models, and accurate. Previous work extended
Cramer-Rao methods to obtain a method that was computationally efficient and
applicable to a large class of realistic mathematical models. The present
work reported here applies this method to study the effect of an uncertain,
unstable source frequency and the effect of a broadband source signal on pas-
sive tracking using omnidirectional and directional sonobuoys.

In addition, the report describes work on developing performance predic-
tion methods that are more accurate than Cramer-Rao methods in low signal-to-
noise ratio cases. One method is based on rate distortion theory and shows
great promise, This method requires no simulation, it is analytically and
efficiently computable for a large class of static nonlinear problems, and it
is better than the Cramer-Rao method when signal-~to—noise ratio is low. The
work reported here also investigated a numerical method of performance pre-
diction based on classical ambiguity analysis. This investigation obtained
bounds on the error between the numerical prediction and the exact mean square

error as a function of the size of the numerical computation.
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SECTION 1

INTRODUCTION

1.1 INTRODUCTION

The operational deployment and mission objective of airborne acoustic sur-
veillance (passive sonobuoys monitored by aircraft) create a special acoustic
environment and restrict the information processing capabilities in respects
which differ from other passive acoustic surveillance methods (towed arrays,
hull-mounted arrays, bottom—anchored arrays). But the currently operational
and planned next generation of airborne signal processing systems have an
architecture similar to other passive acoustic systems. That is, the proces-
sing system consists of (1) a "front-end"” which performs spectral analysis of
the raw signal from each sonobuoy to extract frequency and bearing informa-
tion about the target and (2) a "back~end” which uses the front~end output to
detect, locate, or track the target. Much work has been done on improving the
design of the individual modules, but there appears to have been little work
on evaluating and designing the overall signal processing-tracking system.

The research described in this report addresses the problem of evaluating
the potential performance that might be achieved by improving the design of
the overall signal processing and tracking system. Specifically, our research
problem is to develop mathematical methods and numerical algorithms to estimate
the optimal tracking performance possible with given mathematical-physical

models of acoustic signals and sensors. Our objective has been to develop

1-1
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performance prediction methods that are computationally efficient, applicable

to realistic passive tracking models, and accurate. In our previous work [1]*
I 'D we developed a Cramer-Rao method to obtain a method that was computationally
efficient and applicable to a large class of mathematical models. In Section
L 2 of this report we have shown that this method is easy to apply to more
!
' - realistic models than the ones used in [1). Specifically, we have used the
; - method to study the effect of uncertain, unstable source frequency and the
effect of the presence of a broadband source component on tracking accuracy.
_ In some nonlinear estimation problems of low signal-to—-noise ratio,
Cramer—-Rao methods may predict performance much better than the optimal pro-
cessing algorithm can actually achieve. This disadvant. f Cramer-Rao meth-
i r ods motivated us to investigate performance prediction methods which would be
more accurate when the signal-to-noise ratio was low, but which are still

efficiently computable for a large class of realistic models. Sections 3 and

4 focused on this problem.

Section 3 investigated an analytical (i.e., not requiring simulation)
method based on rate distortion theory [4]. This method shows great promise
because it is efficient to compute for a large class of nonlinear problems
and it is better than the Cramer-Rao method when signal-to-noise ratio is low.
However, the method requires further development to make it applicable to
realistic dynamic problems.

Section 5 investigated a numerical method of performance prediction often
described as ambiguity analysis [7],[15]. This method is essentially based

on numerical computations rather than on analytical formulas. The method can

*References are indicated by numbers in square brackets, the list appears at
the end of the main body of this report.
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give an accurate performance prediction provided sufficient computational
resources are available. Our investigation studied the relationship between
prediction accuracy and computational complexity for this method. Further
work remains to determine the precise effect of signal-to-noise ratio on the
relationship between prediction accuracy and computational complexity.

In the remainder of this section we present a summary of the research
detailed in Sections 2, 3, and 4.
1.2 CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY UNCERTAINTY

AND BROADBAND SIGNALS

In our previous work [1] we refined available Cramer-Rao performance
analysis methods to exploit special features of the airborne acoustic signal
processing and tracking problem. In particular, it was possible to obtain
an efficient, recursive computation, and to avoid completely Monte-Carlo sim—
ulation despite the presence of nonlinear measurements. A finite dimensional
stochastic differential equation [2] was used to model a constant velocity
target radiating acoustic signals to passive omnidirectional and directional
sonobuoys. In [1] we found that such models of airborne acoustiec tracking
problems have the following structural property: all nonlinearties of the
state equations are functions only of the source kinematic states (position
and velocity). The other state variables, modeling such quantities as source
frequencies, broadband component, received signal phase, etc. occur linearly
in the state equations. Because of this structure of the mathematical model,
we were able to derive an efficient Cramer—Rao type lower bound that treats

the source kinematic variables as unknown parameters and all other state

variables as random, normally distributed parameters.

1-3
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In the work of Section 2 we have illustrated further the utility of
this approach by analyzing two effects not studied in [1]): the effect of an
initially uncertain and randomly unstable source frequency, and the effect
of a broadband component of the source frequency. The random frequency was
parameterized by two variables, initial root-mean-square uncertainty and rate
of variation. The rate of variation (studied for .0l to 1.0 Hz/min) appeared
to have negligible effect on both position and velocity tracking error.
Initial uncertainty had little effect on position tracking error, but it did
have a significant effect on velocity tracking error. When the initial source
frequency uncertainty reaches 1 Hz, the initial velocity tracking error is
not substantially reduced until the source passes through the sonobuoy field.
This indicates that initial uncertainty concerning source frequency can make
the velocity tracking performance sensitive to source-sensor geometry (i.e.,
good velocity tracking will depend more crucially on good geometry).

The broadband source component was modeled as a simple stationary first-
order Markov process. The bandwidth of this process was fixed at 200 Hz
and the ratio of broadband to narrowband power was varied from 10-5 to 10%,
Increasing this ratio increases the total source power, and the position and
velocity tracking error decrease as a consequence, The decrease in tracking
error is comparable to the decrease in error with increased narrowband source
signal power studied in [1]. This indicates that broadband source energy is
comparable in value to narrowband source energy, and that the broadband com-

ponent of the source signal can be profitably exploited by an acoustic signal

processing system.
Many other realistic models can be analyzed using the methods of Section

2. However, before analyzing the performance of other realistic models of

-
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passive acoustic tracking problems, we need to determine the degree of opti-
mism inherent in the performance prediction of Section 2. Sections 3 and 4
present one approach to doing this, namely by trying to develop more accurate
performance predictions with which to compare the methods of Section 2., It

is also desirable to compare these performance predictions to the performance
of actual algorithms. The methods of Section 2 suggest a processing algorithm
architecture that might realize the performance prediction in some cases (see

[1} for discussion).

1.3 RATE DISTORTION PERFORMANCE ANALYSIS

Communication theory provides a useful interpretation of tracking prob-
lems different from the more conventional statistical estimation theory point
of view. Messages are generated by a source and coded by an encoder. The
encoded messages are transmitted through a channel, decoded by a decoder, and
received by a user. In communication problems the source, channel, and user
are specified, and the problem is to design encoder and decoder so that mes-
sages received by the user are accurate reproductions of the messages gener-
ated by the source.

One can interpret a tracking system as a type of communication system in
the following way. In this interpretation the message generated by the source
is a set of target parameters (e.g., positions and velocities at a given
time). The encoder for passive tracking problems does nothing to code the
source message. In active tracking we can control the encoder to some extent
(e.g., increase signal strength). The encoder and channel for the tracking
problem represent the transformation between target parameters and sensor
outputs. One might also include preprocessing of sensor outputs as part of
the chan;el if that preprocessing is already specified. Finally, the decoder

1-5
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for the tracking problem is the tracking algorithm which provides estimates

of target parameters to a user. In tracking problems the source (target
model), encoder and channel (measurement model), and user are specified, and
the problem is to design a decoder (tracking algorithm) so that estimates
received by the user are accurate reproductions of the parameters generated
by the source.

The communication theory viewpoint is useful because it allows us to
apply to the tracking problem techniques of information theory which do not
exist in statistical estimation theory. The techniques relevant to tracking
performance analysis involve rate distortion theory [4] first developed by
Shannon [5],[6]. Distortion is a measure of the average error between the
message generated by the source and the decoded message received by the user.
In a tracking problem it could be the mean square error in the tracking algo-
rithm's target parameter estimation.

Using rate distortion techniques and some simple extensions of them in
Section 3, we showed how to compute analytically rate distortion lower bounds
of mean square error for static nonlinear estimation problems with additive
Gaussian noise. Specifically, we obtained a lower bound of the mean square
estimation error for any specified component of the state vector. We showed
that the rate distortion bound is asymptotically tighter than the Cramer-Rao
bound in the limit of low signal-to-noise ratio.

Based on present results, the rate distortion bound offers a better
approximation of mean square performance in the high measurement noise regime
than the Cramer-Rao bound. Furthermore, the rate distortion bound requires
little, if any, more computation than the Cramer-Rao bound. Thus, the rate

distortion bound appears to complement the Cramer—Rao method in the nonlinear,

1-6
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high noise regime where the latter bound is known to give overly optimistic

approximations of the true mean square error. However, in order to make the
rate distortion theory useful for the dynamic nonlinear estimation problems

of tracking, we must develop our current results in two significant ways:

1. it is necessary to obtain a simple rate distortion bound in
the case of a vector state and a general vector measurement;

2. it is necessary to derive a recursively computable bound for
dynamic estimation problems.

Other directions for further investigation exist beside these two neces-
sary extensions. One direction would extend the bounds to problems for which
the state is an unknown, non-random parameter (or a mixture of random and non-
random parameters). In [l1] we found that a large class of tracking problems
can be modeled by a state process which consists of an unknown deterministic
component and an unknown, Gaussian distributed random component. Rate distor-
tion theory for nonstatistical sources (e — entropy methods [4]) may allow us
to derive such results.

Another direction is to study the effect of architecture constraints,
such as preprocessing of measurements, on tracking estimation performance.

We investigated this problem in [1] using Cramer-Rao methods. A rate distor-
tion approach, based as it is on information theory, would provide a more

general, more accurate method of analyzing architectural constraints.

1.4 AMBIGUITY PERFORMANCE ANALYSIS

Ambiguity analysis ([7],[15] Chapter 10) is an attempt to understand the
global nature of a parameter estimation problem, This is in contrast to Cramer-
Rao methods which provide a more local analysis of estimation performance.

The Cramer-Rao lower bound on mean square estimation error will be an accurate

1-7
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estimate of true optimal performance provided that it is possible to acquire
or maintain an estimate near the unknown parameter at all. The local problem
(addressed by the Cramer-Rao method) is to analyze accuracy given acquisition;
the global problem (addressed by ambiguity analysis) is to analyze the acqui-
sition performance.

The ambiguity method approximates the mean square error of the maximum
likelihood estimator by forming a weighted sum of the Cramer-Rao lower bound
with a finite number of discrete errors. The weights are probabilities asso-
ciated with the finite hypothesis testing problem of choosing one of a finite
number of regions in the parameter space. The regions were selected so that
one large region (proportional to N-1/2 in size) contained the true parameter.
The rest of parameter space was divided into smaller regions (proportional to
N-! in size)., We showed that this method is different from the exact mean
square error by a term proportional to Nl Thus, the method converges to
the exact mean square error as the number of regions increases, and the error
of the approximation is inversely proportional to the number of regions.

Further work 1is required to determine how the magnitude of the measure-
ment noise (or equivalently, the signal-to-noise ratio) enters into the
approximation error. This result will clarify how large the number of regions
needs to be for a given signal-to-noise ratio. The convergence analysis also
needs to be extended to the general case of vector states and measurements
and to the case where a measurement process is observed. The order of the
approximation error is expected to remain the same in these generalizations
but a more precise idea of the size of this error would help us understand
the computational feasibility of applying the ambiguity analysis method to

analyze the performance of complex estimation problems.

1-8
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SECTION 2
CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY
INSTABILITY AND BROADBAND SIGNALS

2.1 INTRODUCTION

In our previous work [1]) we refined available Cramer—-Rao performance
analysis methods to exploit special features of the airborne acoustic signal
processing and tracking problem. In particular, it was possible to obtain an
efficient, recursive computation, and to avoid completely Monte-Carlo approx-—
imation despite the presence of nonlinear measurements. In this section we
illustrate further the utility of this approach by analyzing the effects of
unstable and unknown source frequency and of broadband source signals on the
predicted optimal tracking performance. We describe the mathematical model
we have used in subsection 2.2. Subsection 2.3 presents the results of nu-

merical runs and subsection 2.4 presents conclusions based on these results,

2.2 MATHEMATICAL MODEL WITH FREQUENCY INSTABILITY AND BROADBAND SOURCE

A finite dimensional stochastic differential equation [2] was used to
model a constant velocity target radiating direct path acoustic signals to
passive omnidirectional and directional sonobuoys. This model has the gen-

eral form

dx = f(x)dt + G dw (2-1)
dy = h(x)dt + dv (2-2)
2-1
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where x is the finite dimensional state vector and y is the finite dimensional

vector of measurements. The state noise and measurement noise were assumed

to be independent Gaussian white noise processes. Note that f and h were non-
linear functions of x and G was a constant matrix,.
The state vector x used in the model consisted of the following components.

. ]

X)

L4

<y

<v

X = . (2-3)

E
In Eq. 2-3 the expressions ;1, X, denote the two orthogonal components of the

position of the target relative to some fixed position (the origin at 0,0).

The expressions ;l’ 32 similarly denote the components of the target velocity.

2-2
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The expression ¢, denotes the phase of the narrowband component of the received
acoustic signal at buoy number k. Similarly, sy denotes the broadbard compo-

n nent of the received acoustic signal. The expression f denotes the transmitted
source frequency. There are N total sonobuoys.

The measurement vector y consisted of the following components.

y = . (2-4)

where for each k the expression y, denotes either

Yk = Yk,om (2-5)

if sonobuoy k is an omnidirectional buoy, and

yk,om
Yy = yk’d1 (2-6)

Yk, d2

if sonobuoy k is a directional buoy. 1In any case Yk,om denotes the omnidi~

rectional channel signal and yk 4’ yk 42 denote the two directional channel

signals,

The target model assumed constant velocity motion, namely

2-3
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(2-7)

Note that Eq. 2-7 contains no driving noise on the right-hand side. This
was important in developing an efficient method to compute performance as de-
scribed in [1]. The initial position components ;1(0), ;2(0) and the initial
velocity components 31(0), 32(0) were treated as unknown parameters rather
than as random variables. This is in contrast to the treatment of f, ¢ and
sk as random parameters.

The acoustic signal radiated by the target was assumed to consist of
two parts: a narrowband component and a broadband component. The narrowband
component was modeled as follows. The source frequency f satisfied the sto-

chastic differential equation
df = -~ of(f - £)dt + dwg (2-8)

where af > 0, f and the variance og2 associated with wg were known constants.
The initial variance of f(0) was assumed to be the steady state variance

given by

of2
(£¢0) - £(0))2 = — (2-9)
2af
where the overbars () denote mathematical expectations. The physical

meaning of Eq. 2-8 is that the source frequency f(t) at time t is an unknown

random variable that varies randomly about the constant nominal value f

2-4
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(f = 100 Hz in our numerical examples). Note that the average variation of

f per time constant is of order

of '\, o . (2-10)

That is, Eq. 2-10 gives the average speed of variation of the source frequency
(it has units Hz/min in our numerical examples).
The source frequency f is Doppler-shifted and drives a random phase equa-

tion given by

‘71';1'zk1]+‘72'(;2'zk2) -
d¢, =f -{ 1+ ’ dt
c\[(;l - zk,l)z *(xy - zk,z)z
+ clw‘%k . (2-11)
In Eq. 2-1]1 z and z denote the coordinates of the position of sonobuoy

» ’
k, and ¢ 1s the assumed constant speed of sound. The noise processes Vo k

were assumed to have the same variance, c¢2, assoniated with all of them. The
model also allowed the possibility of correlation between Ve k and W, j for
k %3 A constant correlation coefficient p (0 < p < 1) was assumed for all
such cases.

The physical interpretation of Eq. 2-11 is obtained as follows. Consider

a signal y(t) with phase ¢y(t), specifically

y(t) = sin ¢ (t) (2-12)

If one assumes that the phase is initially unknown (i.e., distributed uniformly

over 360 degrees), then y(t) is a wide sense stationary process (3] with total

power 1/2 and two-sided power spectral density at frequency w given by

2-5
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2
4]
__¢ . . (2—13)
4w ot o¢u
— + (f - w)? — + (f + w)?
R GNP CRE

This result assumes that the Doppler—-shifted frequency is fixed or varies
slowly relative to the phase variation. The expression in Eq. 2-13 represents
a spectrum with peak at frequency fp and width of order 0¢2.

The broadband component of the received signal is modeled by the sto-

chastic differential equation
dsg = = og * sk dt + dwg K (2-14)

where ag > 0 and the variance og? associated with Ws, k are known constants.
The signal si(t) is a stationary process with two-sided power spectral density
at frequency w given by

1 °s2

;; -T:;Efzfzﬁj— , (2-15)
total power 032/203 and bandwidth of order og.

The processes ¢ and sy are combined to form the received signal process

as follows. The omnidirectional channel process yk om satisfies the equation

dyx om = (sk + A sin ¢¢)dt + dvi on (2-16)

where the constant A and the variance °k,om2 associated with vk op are assumed
known. Note that the total power of the narrowband component of yk om is a2/2
compared to the broadband component power 082/205 and the noise component
power spectral density ok’°m2/2n (the white noise dvk om has infinite total
power of course).

2-6
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The directional channel signals y and y satisfy similar equations
k,dl k,d2

given by the following.

.’
(x, - zk,l) e +
dyk,dl = (sk + A sin ¢k) . " t dvk,dl
X - 2 X - 2
(%, zk,l) *+ (%, zk,z)
(2-17)
(%, - %, 2)
dyk,dz = (sk + A sin ¢k) . 2 77 dt + dvk,dZ
: - 2 : - 2
(x, zk,l] *+ (x, zk,z)
(2-18)

2.3 NUMERICAL EXAMPLES

This section describes the numerical examples we computed to study the
effects of unknown, unstable source frequency and the effects of a broadband
source signal on predicted optimal tracking performance. Tracking performance
was measured by the root-mean-square (rms) errors in position and in velocity
versus time after initial contact, The target—sensor geometry assumed in each
example is shown in Fig. 2-1; nominal test parameters are shown in Table 2-}.
Note that the measurement noise for omnidirectional channels was chosen so
that a single directional buoy within 5 kft of the source could determine
source frequency to within .2 Hz and bearing to within 4 degrees based on 1
minute worth of raw data., Figures 2-2 and 2-3 show respectively the position
and velocity tracking performance for the nominal test parameters. Note that

the rms error is plotted on a logarithmic scale in these figures.

2-7
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INITIAL TARGET /5 ket FINAL
CONTACT TRAJECTORY Lo CONTACT
OMNI 1 OMNI 2
l R-1976
[
Figure 2-1, Target Sensor Geometry
I TABLE 2-1. NOMINAL TEST PARAMETER VALUES
TARGET
Initial x position -15 kft
Initial y position 0 kft
Initial x velocity 1.2 kft/min (approx. 10 kt)
Initial y velocity 0 kft/min
Initial position uncertainty 30 kft
Initial velocity uncertainty 1.5 kft/min
Total time of contact 25 min
SOURCE SIGNAL
Narrowband center frequency 100 Hz
Initial uncertainty of frequency .01 Hz
Frequency variation rate .01 Hz/min
Narrowband component line width .1 Hz
Broadband bandwidth 200 Hz
Broadband:narrowband power ratio 10-5
SENSOR
Number of directional buoys 1
Number of omnidirectional buoys 2 1
Interbuoy distance 5 kft -
Buoy phase correlation coefficient 0
Omnidirectional channel noise .11
Directional channel noise .03
2-8 _
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Table 2-2 shows the cases computed to study the effects of frequency

uncertainty and frequency instability. As shown in Table 2-2, two parameters

measuring initial source frequency uncertainty (given by Eq. 2-9) and average
rate of variation (given by Eq. 2-10) were varied independently. The effect
on tracking position error is shown in Figs. 2-4 through 2-15; the effect on
tracking velocity error is shown in Figs. 2-16 through 2-27,

Table 2-3 shows the cases computed to study the effect of a broadband
source component. One parameter, the ratio of total broadband to total

narrowband power, was varied. This ratio is given by

2
Og

] (2-19)
agA
The effect on tracking position error is shown in Figs. 2-28 through 2-32;

the effect on tracking velocity error is shown in Figs. 2-33 through 2-37.

2.4 CONCLUSIONS

Table 2-4 shows the effect of source frequency uncertainty and instabil-
ity on the minimum tracking position error achieved during contact and the
velocity error given at the same time. In Figs. 2-4 through 2-15 this error
is the minimum of the position error curves. Note that the position error
minimum occurs at 14 minutes after initial contact; the closest point of
approach occurs at 12.5 minutes after initial contact. As Figs. 2-4 through
2-15 and Table 2-4 indicate, the initial uncertainty in source frequency has
a small effect on position tracking error; the rate of source frequency vari-
ation appears to have virtually no effect. Table 2-4 indicates that the rate

of source frequency variation has no effect on velocity tracking error; but
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the initial source frequency uncertainty has a greater effect on velocity
error than it has on position error. The effect of initial source frequency
uncertainty on velocity error is shown in Figs. 2-16 through 2-27 where the
initial uncertainty varies from .01 Hz to 10 Hz. These figures show that the
initial velocity uncertainty (1.5 kft/min) is reduced very little until the
source passes through the sonobuoy field when initial frequency uncertainty
is high. This indicates that initial frequency uncertainty could make the
velocity tracking performance sensitive to target-sensor geometry (i.e., good
performance will depend more crucially on good geometry).

Table 2-5 shows the effect of a broadband source signal component on the
minimum tracking position error achieved during contact and the velocity error
given at the same time. 1In Figs. 2-28 through 2-32 this error is the minimum
of the position error curves. As before, the minimum occurs at 14 minutes
after initial contact. Increasing the ratio of total broadband to total nar-
rowband power decreases position and velocity error as indicated in Table
2-5. However, this effect is the expected consequence of the total increase
in signal power relative to the background noise level. That is, the total
narrowband power and the background noise levels are held constant in the
examples described here. The decrease in tracking error with increased broad-
band source signal power is comparable to the decrease in tracking error with
increased narrowband source signal power studied in {1]. This indicates that
broadband source energy is comparable in value to narrowband source energy,
and that the broadband component of the source signal might be profitably

exploited by an acoustic signal processing system,
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TABLE 2-2. FREQUENCY EFFECT CASES STUDIED

Initial Uncertainty (Hz)

01 .1 1 10
]
Fig. 2-4* Fig. 2-5 Fig. 2-6 Fig. 2-7
.01
Fig. 2-16** Fig. 2-17 Fig. 2-18 Fig. 2-19
Variation
Rate Fig. 2-8 Fig. 2-9 Fig. 2-10 Fig. 2-11
(Hz/min) .1
Fig. 2-20 Fig. 2-21 Fig. 2-22 Fig. 2-23
Fig. 2-12 Fig. 2-13 Fig. 2-14 Fig. 2-15
1
Fig. 2-24 Fig. 2-25 Fig. 2-26 Fig. 2-27
TABLE 2~3. BROADBAND EFFECT CASES STUDIED
Broadband to Narrowband Power Ratio
10-5 102 1 102 104
Fig. 2-28* Fig. 2-29 Fig. 2-30 Fig. 2-31 Fig. 2-32
Fig. 2-33** Fig. 2-34 Fig. 2-35 Fig. 2-36 Fig. 2-37

* position error versus time

** velocity error versus time

2-11
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TABLE 2-4. FREQUENCY EFFECT ON MINIMUM TRACKING ERROR
Initial Uncertainty (Hz)
.01 .1 1 10
40 kft* 41 kft 42 kfe 43 kfe
.01
.08 kft/min** | .11 kft/min | .14 kft/min | .15 kft/min
Variation
Rate 40 kft 41 kft 43 kft 43 kft
(Hz/min) .1
.08 kft/min .10 kft/min .15 kft/min .15 kft/min
40 kft 41 Kkft 43 kft 43 kft
|
.08 kft/min .08 kft/min .15 kft/min .15 kft/min
TABLE 2-5. BROADBAND EFFECT ON MINIMUM TRACKING ERROR
Broadband to Narrowband Power Ratio
10-5 10-2 1 102 104
40 kft* 40 kft .36 kft .22 kft .12 kft
.08 kft/min** | .08 kft/min | .07 kft/min | .04 kft/min | .04 kft/min

* minimum position error

** velocity error at time of minimum position error

2-12
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SECTION 3

RATE DISTORTION PERFORMANCE ANALYSIS

3.1 INTRODUCTION

This section discusses the rate distortion theory approach to analyze
mean square error in statistical nonlinear estimation problems. We present
here preliminary results for static estimation problems and compare the rate
distortion and Cramer-Rao-Van Trees approaches., Based on preliminary results,
the rate distortion method gives a computable lower bound which is tighter
than the Cramer-Rao-Van Trees lower bound in the regime of low signal-to-noise
ratio.

This section is organized as follows. Subsection 3.2 presents the
necessary background in communication and rate distortion theory. It also
sketches the communication system approach to statistical estimation problems.
Subsection 3.3 investigates the static estimation problem with a scalar state.
Subsection 3.4 extends this to the vector state case,

Finally, subsection 3.5 concludes the section, discussing other work and

directions for further investigation.

3.2 INFORMATION THEORY BACKGROUND

3.2.1 Communication Theory Point of View

Communication theory provides a useful interpretation of tracking prob-
lems different from the more conventional statistical estimation theory point

of view. The block diagram of a communication system is shown in Fig. 3-1.

3-1
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Messages are generated by a source and coded by an encoder. The encoded

messages are transmitted through a channel, decoded by a decoder, and received
by a user. In communication problems the source, channel, and user are spec~
ified, and the problem is to design encoder and decoder so that messages
received by the user are accurate reproductions of the messages generated by

the source.

SOURCE }—=| ENCODER

CHANNEL

USER l«——] DECODER  jeg—-—

R-1988

Figure 3-1. Communication System Block Diagram

Figure 3-2 shows how one can interpret a tracking system as a type of commun-
ication system. In this interpretation the message generated by the source is
a set of target parameters (e.g., positions and velocities at a given time).
The encoder for passive tracking problems does nothing to code the source mes-
sage. In active tracking we can control the encoder to some extent (e.g.,
increase signal strength). The encoder and channel for the tracking problem

represent the transformation between target parameters and sensor outputs.

3-2
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One might also include preprocessing of sensor outputs as part of the channel
if that preprocessing is already specified. Finally, the decoder for the
tracking problem is the tracking algorithm which provides estimates of target
parameters to a user. In tracking problems the source (target model), encoder
and channel (measurement model), and user are specified, and the problem is to
design a decoder (tracking algorithm) so that estimates received by the user

are accurate reproductions of the parameters generated by the source.

TARGET TARGET
PARAMETERS PARAMETERS
SOURCE ENCODER
(target ———»1 (Fixed, does
model) nothing)
CHANNEL
(Measurement
model)
SENSOR
DECODER OUTPUTS
USER - (Tracking [4——-
algorithm)
TARGET
PARAMETERS
ESTIMATES R-1989

Figure 3-2. Communication System Interpretation of Tracking System
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The communication theory viewpoint is useful because it allows us to

»

i apply to the tracking problem techniques of information theory which do not
P u exist in statistical estimation theory. The techniques relevant to tracking
}

performance analysis involve rate distortion theory [4] first .developed by

Shannon [5],{6]. Distortion is a measure of the average error between the

- message generated by the source and the decoded message received by the user.
In a tracking problem it could be the mean square error in the tracking algo-
rithm's target parameter estimates. An important question about a communica-
tion problem is: given a source, channel, and user, under what conditions is
it possible to design an encoder and decoder that reproduce the source output
for the user with an average distortion that does not exceed some specified
upper limit D? This question is the analog of the tracking performance analy-
sis problem we are interested in: given target and measurement model, under
what conditions is it possible to design a tracking system that estimates
target parameters with an average error that does not exceed some specified

upper limit D?

Rate d’stortion theory is able to answer the communication system ques-
tion in a precise and relatively simple way. Associated with the source and

user is a function R(D) of D, called the rate distortion function. Associated

with the channel is a quantity C called its capacity. One can achieve average

distortion D if and only if channel capacity exceeds R(D). A typical rate

distortion function is shown in Fig. 3-3. To apply rate distortion theory to -
the tracking problem we need to find the rate distortion function R(D) asso-

ciated with the target model and the user-defined error criterion, and find -
the capacity C associated with the measurement model. These quantities will | )

tell us that an average tracking error smaller than D can be achieved only if

3-4
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R(D) < C. Note that the converse statement, that R(D) < C implies we can
achieve average error of D, is not true in tracking because we cannot control
the encoder as one does in conventional communication systems.* Thus, the
inequality R(D) < C imposes a lower bound on the average distortion, lower
than which we cannot achieve with the given target model and measurement
model, However, it may be possible that no tracking algorithm is able to

achieve this lower limit. Thus, rate distortion theory will give us lower

bounds on tracking error, and we will need to study the tightness of these

lower bounds as a separate issue.

Rate distortion theory provides techniques for computing or approximating
R(D) and C for general classes of sources, users (i.e., fidelity criteria),
and channels. We will describe some of the fundamental results of rate
distortion theory in the next subsection and apply these results to tracking

performance analysis in subsequent subsections.

3.2.2 Rate Distortion Theory Fundamentals and Estimation Problems

We are interested in tracking problems which can be formulated as the

following type of statistical estimation problem,

x(t+l) = Ax(t) + w(t) (3-1)

y(t) = h(x(t)) + v(t) (3-2)

In Eqs. 3-1 and 3-2, the variable x(t) is the state at time t we desire to
estimate given measurements up to that time. Note that the state evolves
linearly (Eq. 3-1), and we assume w(t) and v(t) are zero mean Gaussian random

vectors. The performance analysis problem is to approximate the mean square

*For very special systems (e.g., linear Gaussian ones), this is true.

3-6
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error of an optimal estimator. In previous work [1] we found that many track~
ing problems can be formulated as above, and this particular mathematfical
structure simplifies the computation of the Cramer-Rao-Van Trees performance
bound (1],(71,(8],[9]. We wish to see here whether similar simplifications
occur for rate distortion theory performance bounds.

Before attempting to tackle the dynamic problem formulated in Eqs. 3-1

and 3-2 we will study the static problem
y = h(x) +v (3-3)

where x, v are assumed to be Gaussian random vectors and h is a nonlinear
function of x. Our approach is to understand the general static problem of
Eq. 3~3 first, We can then write the dynamic problem of Eqs. 3-1 and 3-2 as

a large static problem and try to exploit the recursive structure of this spe-
cial type of static problem to obtain an efficient, recursive approximation

of the minimum mean square estimation error. In this report we will consider
only static problems; we will discuss dynamic problems in a subsequent report,

The rate distortion function of a memoryless scalar Gaussian source of

mean x and variance Q with respect to the squared-error criterion is {4, p.99]

1 Q
R(D) = - log | - . (3-4)
2 D
The capacity C of a channel defined by
y = h(x) + v (3-5)

where v is zero mean Gaussian with covariance matrix R and dimension m is

given by the mutual information I(y;x) between y and x.

3-7
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| C = I(y;x) (3-6)

We cannot compute I(y;x) for general nonlinear h, but we can approximate it
as follows.,

I(y;x) = H(y) - H(y|x) (3-7)

Equation 3-7 gives the mutual information in terms of the differential entropy
H(y) and the conditional differential entropy H(y|x). Now we can compute
H(y|x) exactly:
o 1
H(y|x) = H(v) = > log(2ne {det R)W) (3-8)
We cannot compute H(y) in general, but we can bound it as follows [4].
m L
H(y) < E log (27e [det A]M) (3-9)
In Eq. 3-8 the mxm matrix A is the covariance of y:

A=E([ly - E(y)] [y -~ E(IT) (3~10)

where E(.,) denotes mathematical expectation and T denotes matrix or vector
transposition,

If D is the minimum mean square error

D = min E((x - X(y))2) (3~11)
X

where the mimimum is taken over all estimators X based on the measurement Y,

then rate distortion theory [4] tells us that

R(D) < C . (3~12)

Lo

-




ALPHATECH, INC.

From Eqs. 3-8 and 3-9 we see that

1 det A

¢ < 2 1°g(detR

) (3-13)

Combining Eqs. 3-4, 3-12 and 3-13 gives

1 Q 1 det A (3-14)
- <y < = -1
2 tog () <5 log({ o))
or equivalently,
QdetR (3-15)
D2 getn °
Thus, from Eq. 3-11 we see that
" QdetR
E((x ~ x(y))2) > (3-16)
det A

for any estimate of x based only on y. Note that in this problem the covari-
ance of y can be written

A=T+R (3-17)
where

I = E([h(x) - E(h(x))] [n(x) - E(b(xN]T) . (3-18)

Thus, we have

QdetR

- 2 — e
Bx = x> =17

(3-19)
This 1s the basic result of rate distortion theory we will use in the follow—

ing subsections to analyze the minimum mean square error in static estimation

problems.

3-9
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3.3 SCALAR STATE

3.3.1 Computation of the Rate Distortion Bound
In this subsection we consider the problem of estimating a scalar

Caussian state x with mean x and variance Q given the vector measurement
y=h(x) +v (3-20)

where v is a Gaussian random vector with dimension m, O-mean, and covariance
R. In subsection 3.2 we found the basic rate distortion bound (RDB) of mean

square error:

Q - detR

E((x - ®(y)?) > PRI (3-21)
where
I = E([h(x) - E(h(x))] [h(x) - E(h(x))]T) (3-22)

To compute the RDB requires computing I, or equivalently, computing

E(h(x)) (3-23)

and

E(h(x)h(x)T) . (3-24)

The expectations Eqs. 3-23 and 3-24 are taken with respect to a Gaussian dis-
tribution and can be computed in closed form for a large class of nonlinear h.
Note that we utilized this fact in earlier work [l1] to compute Cramer-Rao—
Van Trees bounds. Indeed, if h(x) is a sum of products of polynomials, expo-
nential, and sine or cosine functions, then we can compute the expectations

in Eqs. 3-23 and Eq. 3-24 in closed form. This is true also if x is a vector.

3-10
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The computation of such expectations derives from the basic formula

E(d(u,x)) = ¥(u) (3-25)
where

&(u,x) = exp(uTx)

¥(u) = exp(utx + l uTQu) (3-26)
2

where u = (u;, u2, ...up)T is a vector of complex numbers, and x is a Gaussian
random vector of dimension n, mean';, and covariance Q. Consider the scalar

case n=1 for example. If n is a real number we find

— 1
E(e™) = eux + > R (3-27)
If u = 1 (imaginary number v-1), we obtain
-1
i i E Q
Ee’ ) =e e (3-28)
which gives the two results
-1
- - Q
E(sin x) = sin x *+ e 2 (3-29)
-1
- -Q
E(cos x) = cos x e 2 . (3-30)

Taking derivatives of Eq. 3-26 with respect to u gives us an expression for

E(xN):

n

d - 1

E(xD) = — | euX + - u2Q (3-31)
dun 2 u=0 .

We can obtain other expectations by combining these operations.

3-11
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In general, we consider the class Ap of all functions f(x) which can be
written
P
£(x) = 1 e ¢ Dedluk, %) (3-32)
k=1

where cy are complex constants, ug are constant complex vectors, and Dy are

differential operators of the general form

] 3 k(1) 2 k(2 3 k(n)
k=G Gy G - (3-33)

For example, in the scalar n=1 case

= (D" . wox) . (3-34)

9
n

Note that if f]| and f are in A, then so are f]} * f2 and f} + f2. The class
Ap also contains all constant functioms.
I1f f(x) is given by Eq. 3-32, then
E(f(x)) = % cg Di ¥(uy) (3-35)
k=1
is the closed form expression for the expectation.

Thus, we see that if each component function of h(x) is in A,, then each
component of h(x) h(x)T is also in A, and we can compute the éxpectacions in
Eqs. 3-23 and 3-24 in closed form, Furthermore, we can approximate any non-
linear function h using functions in A,; and this gives us a method for
approximating the expectations in Eqs. 3-23 and 3-24 for general h. In the
next subsection we will use this approach to compute the rate distortion bound

in some examples.

3-12
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3.3.2 Examples of the Rate Distortion Bound

3.3.2.1 Linear Measurements

Suppose that h(x) = h ¢ x is linear. Let us compute the RDB for

y=hex+v . (3-36)

The bound for Eq. 3-36 will be the same as for

T=h -x+% (3-37)
_ . where
S h=4®1n (3-38)
s

T=VR1lv (3-39)

b
o 5
The second version will simplify computation because the covariance of v is

just the mxm identity matrix Iy. The wmain quantity to compute is

~ o~

~ T
det (T4 Ip) = det (R B - Q+ Ip) (3-40)

This is easy if one notes that the determinant of a matrix is the product of

its eigenvalues. The matrix

~ ~T
has one eigenvalue
"Th - Q+1 (3-42)

and m~1 eigenvalues 1. Thus, the RDB is

Q
RDB P m——— e (3-43)

TR « Q + 1 j

F 3-13 k
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In terms of h and R this is just
rDB = (hTR7In + @71)~! (3-44)
which is in fact the minimum mean square error for the linear problem.

3.3.2.2 Scalar Nonlinear Measurements

Let us assume that y and v are scalar random variables, and let us con-
sider examples of nonlinear h(x). For simplicity, we will assume X = 0 in

this set of examples.

h(x) = xR

The RDB in this case is
RDB = (B, + qu~lg~1 + q@~1)-1 (3-45)

where

(2n)! (n1)?
20« nl 2nf(n)! |2
2

= (3-46)
for even n =2, 4, 6,... and

(2n)!
By = ————— (3-47)
20« n!

for o dd n=1, 3, 5,... . Figure 3-4 shows the dependence of this bound on R

for fixed Q= 1.0 and n =1, 2, 3.

h(x) = sin x and h(x) = x - x3/6

The bound for sin x is

3~14
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1
RDB = (5 [1 - e 2Q) g7 lg7ly Ll (3-48)

0 x?

The bound for the third order expansion of sin x, namely x - g is

5
RDB = ({1 - Q@+ — - QIr"1 + 1)1 (3-49)
12
]
. Figure 3-5 shows these bounds together with that for h{(x) = x versus R for
Q =1.0.
3.3.2.3 1Identically Distributed Conditionally Independent Scalar Measurements
Suppose that we take N measurements
- y(t) = h(x) + v(t) (3-50)
such that v(t) are independent, scalar Gaussian random variables of variance
R. Let
K r = B([h(x) - E(a(x))]2) . (3-51)
Then we can compute the RDB for Eq. 3-50 in terms of Q, I'y R and N. The
static vector measurement problem equivalent to Eq. 3—-50 has the RDB given by
B
Q * det (R - Iy)
(3-52)
det (Ty + R * Iy)
- where Iy is the NXN identity matrix and Iy is the NXN matrix which has all of
its elements equal to I'. Reasoning as in subsection 3.3.2.1 we can compute ]
iy the determinant in the denominator of Eq. 3~52. Note that Ty is a rank 1 :
matrix with only one nonzero eigenvalue, namely B ?
1
1
Tr Iy=N+T (3-53) ‘
~— - -
3-16 )
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where Tr denotes the trace of a matrix. Consequently, Iy + R * Iy has one
eigenvalue equal to N * '+ R and N - 1 eigenvalues equal to R. Thus, the

determinant 1s (N » I' + R) + RN-1l and the RDB is
RDB = ([N - T Q71] R71 + o~1)~1 (3-54)
Note that as N+~ the RDB is asymptotically equal to
QR

RDB = — . (3-55)
NT

3.3.2.4 Nonidentical, Conditionally Independent Scalar Measurements

Suppose that

x + v(1) (3-56)

y(1)

x2 + v(2) (3-57)

y(2)

where v(1), v(2) are independent. 0 - mean, Gaussian random variables with
variance R. Assume x has 0 mean and variance Q. The variance of the vector

measurement y = (y(1), y.2))7T is

Q O
r = 2 (3-58)
0 2Q
Thus, the RDB for this problem is
RDB = ([1 + 2Q + 2Q2R"1]) « R"1 + @~1)~1 (3-59)

Figure 3-6 shows this bound with Q = 1 versus different values of R. Figure

3-6 also shows the mean square error for only one measurement (namely Eq. 3-56).

3-18
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3.3.3 Comparison to the Cramer—Rao—Van Trees Bound

3.3.3.1 The Cramer—Rao—Van Trees Bound

Il Before comparing the Cramer-Rao-Van Trees lower bound (CRVB) to the RDB,

let us review what the CRVB is for the static estimation problem formulated

T

above. Van Trees {7] has derived a lower bound on the error convariance of

- any estimator x(y) for the problem in Eq. 3-20. The bound is
E([x = x(y)) [x = (N]T) > [1* + q71)7) (3-60)

where the inequality is in terms of symmetric matrices, and I'* is defined as

dh oh

r* = E(— (x)TR"1 —(x)) . (3-61)
x 9x

If x is a scalar random variable, then Eq. 3-60 gives the following lower

bound on the error variance
E([x-%x(y)]2) > [T* + q~1)-1 (3-62)

Note that Eq. 3-61 involves computations similar to those required for the
[ ] RDB. 1Indeed, if h is a member of the class of functions A, defined in subsec~
: oh

tion 3.3.1, then the components of — also belong to A,. In this subsection we

ox
will study the relation of the CRVB of Eq. 3-62 to the RDB of Eq. 3-21. Both

are lower bounds of the minimum mean square error., Can we determine condi- -

tions under which one is a tighter bound than the other?

3.3.3.2 Comparison of Bounds for Scalar Measurements

Let us start by computing the CRVB's corresponding to the examples of

subsection 3.3.2.2.
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h(x) = xR

The CRVB in this case 1is

CRVB = (C,qp~1 R-1 + ~1)-1 (3~63)
where
(2[n-1])!
Chp = n2 - — (3-64)
20~1 [p-1]!

Figures 3-7a and 3-7b show CRVB and RDB for n = 2,3 versus R with Q = 1.0,

Note that RDB » CRVB in these examples. Indeed, one can see that

Cn > By (3-65)

for all n = 1,2,... and therefore CRVB < RDB for all n.

h(x) = sin x and h(x) = x - x3/6

The CRVB for h(x) = sin x is found to be
1
CRVB = (-2- {1 + e2Q)r~1 + q~1)-1 (3-66)

x3
and that for h(x) = x ~ —E is

3qQ2
CRVB = ([1 - Q + T]R'l + Q-1 (3-67)

Figures 3-8a and 3-8b show the CRVB and RDB for these two nonlinear examples
(Q = 1.0 and R is varied). Note that the RDB is always tighter (i.e., CRVB <
RDB), and in fact one can prove this is true, It is interesting to note that
as Q+», Eq. 3-48 predicts (correctly) that the mean square error of an esti-
mate of x given y = sin x + v blows up. The CRVB Eq. 3-66 predicts (incor-

rectly) that the error remains bounded.

3~-21
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General nonlinear h(x)

As one might expect from the examples above, it is possible to show that CRVB
< RDB all the time in case of scalar measurements. Furthermore, one can show
CRVB = RDB if and only if h(x) is linear. Recall that our underlying assump-
tions at this point are that x is a scalar Gaussian random variable and y is a
scalar measurement., We prove the following theorem:
Theorem. If h(x) is continuously differentiable in x, and
the expectations E(h(x)2), E([h“(x)]2) are both finite, then
CRVB < RDB
where CRVB = RDB if and only if
h(x) = ax + b
for constants a,b .
We will prove :his theorem in the remainder of the subsection. Assume

first that X = 0 and define

2 -1 x’
¢(x) = [h(x) - h(0)])" x " e ~ 56 (3-68)
for x # 0, and
?(0) = 0 . (3-69)

Note that &#(x) is continuously differentiable and
2
X

#7(x) = 2[h(x) - h(0)] h*{x)x } e 2Q

2
X
- [h(x) - n(0)]2 x"2 e 2Q (3-70)
x2
e - w1 . 20
q
3-26
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for x # 0, and

0°(0) = [h”(0))2 .

Given that E(h(x)2) and E(h”(x)2) are finite, we have that

f“ ¢°(x) dx = lim [#(x) - ¢(-x)]

- x>0

0
(o]

Note that by definition of mathematical expectation,

%2
E(£(x)) = = [ £(x) e 2q dx .

VZnQ -

Using Eqs. 3-70 and 3-73 to rewrite Eq. 3~72 gives us

E(h“(x)2) = Q"1 E([h(x) -~ h(0)]2)

X

+ E ([h7(x) - )

Let h = E(h(x)). Then

E(h”(x)2) = Q°1 E([h(x) - h}2) + Q-1 [h - h(0)]2

h(x) ~ h(0) 12

X

+ E([h"(x) -

it follows that

E(h*(x)2) > @~1 E([h(x) - 1]2)
with equality if and only if

h = h(0)

and
h(x) = h(0)

X

h~(x)

3-27
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The Eqs. 3-77 and 3-78 are equivalent to h being of the form
h(x) = ax + b {(3~79)
for constants a, b, Note that Eq. 3-76 is equivalent to

r*r > re@~l (3-80)
Since
CRVB = (I* + ¢~1)-1
and

RDB = (rQ-lr-l + ~1)-1 | (3-81)

Eq. 3-80 proves that CRVB > RDB, at least for the case x = 0.

The general case of x % 0 follows easily from the x = 0 case. Simply
apply the earlier results to x ~x with the measurement function h(x + X).
This problem will yield the same bounds as for x, h(x).

3.3.3.3 Comparison of Bounds for Identically Distributed -~ Conditionally
Independent Measurements

Under the problem assumptions of subsection 3.3,2.3, we can show that

CRVB < RDB holds for general nonlinear h(x). Recall (Eq. 3-54) that

RDB = ([N-rq~lJR~1 + @~1)-1 (3-82)
One can easily show that

CRB = ([N-r*RjR~1 + @~1)-1 (3-83)

We proved that I'Q~l < I'*R in the last subsection. Consequently, we see that
CRVB < RDB in this case also. Note that CRVB predicts a mean square error

that 1is asymptotic to

3-28
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1
CRVB & —— (3-84)
NT*
. as N+, This is in constrast to
QR
RDB = — (3-85)
NT
- u. Thus, we have
o CRVB r
—_ = (3-86)
RDB QRTI*

asymptotically as N+=, For nonlinear h(x) we saw previously that T/QRI* < 1.
Thus, the CRVB predicts a faster rate of decrease in mean square error than is

in fact possible.

3.3.3.4 Comparison of Bounds for Vector Measurements

From the preceding results one might conjecture that CRVB < RDB in
general. The following example shows that this need not be true. Consider

the example of subsection 3.3.2.4. The CRVB for this example is
CRVB = ([1 + 4QJR™1 + q~1)-1 (3-87)
Figure 3-9 shows CRVB and the corresponding RDB of Eq. 3-59, namely
RDB = ([1 + 2Q + 2Q2R-1JR-! + "1)-1 (3-88)

It is easy to see in this example that CRVB » RDB if R < Q and CRVB < RDB if

R > Q. We can show in general that CRVB < RDB if R is sufficiently large

(i.e., as signal-to-noise ratio approaches 0).
Without loss of generality (by using the same transformation as in

subsection 3.3.2.1) we can assume that the measurement noise covariance is a

SO
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scalar constant R multiplied times the mxm jidentity matrix Ip. Then we have

RDB = Qe(det[Ip,y + R°1 T])71 (3-89)
and
m
CRVB = ([} E(hl:(x)z) JR-1 + q~1)-1 (3-90)
k=1

where hyp(x) are the components of h(x)., The determinant in Eq. 3-89 can be

expanded in powers of R~1 so that
det (Igym + R°1 ) =1 + Tr[R™IT] + O(R™2) (3-91)

where 0(R-2) denotes terms of order R™2 or higher powers of R~™l. The trace is

n
Tr[R™IT) = R | E([hy(x) - E(h(x))]2) (3-92)
k=1

Thus, we see that

n
RDB = ( § E([hg(x) ~ EChi(x))}2) « q~! R°1 + @1
k=1
+ O(R—z))‘l (3-93)
The theorem of subsection 3.3.3.2 implies that

E([hg(x) - E(he(x))]2) Q=7 < E(hi(x)2) (3-94)

for each k with equality if and only if hyg is linear. Consequently, 'f h is
not linear, then CRVB < RDB for R suffiently large. If h is linear, then both

bounds are equal to the minimum mean square error.
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3.4 VECTOR STATE

3.4.1 Rate Distortion Bound for Vector State and Scalar Measurement

Rate distortion theory naturally gives bounds on scalar errors. For

vector state estimation problems, however, we need a bound on the error covar-

iance matrix such as the CRVB provides (Eq. 3-60). In this subsection we

derive a RDB for vector state estimation problems with scalar measurements. S
f ' Suppose that 1_11

3 y = h(x], %) + v (3-95)

where v is a O-mean Gaussian random variable of variance R and x;, x7 are

jointly Gaussian random variables. We are interested in deriving a lower

bound for the mean square error - -1
E([x; = x1(y)]2) (3-96)

of an estimate il(y) of x) . Suppose xp were a fixed, known constant. Then —

the previous result for a scalar state implies that

EC([x; - x3(y)12]|x2) » ([T1(x2)q;"tIR"1 + q~1)-1 (3-97) ]

where :, ;

F1(x2) = EC([h(x),x2) ~ E(h(x],x2)|x2)12[x2) (3-98) 2 ‘:

and ]
Qp = E(Ix) - E(xllxz)]zlxz) . (3-99) )

Note that the conditional variance in Eq. 3-99 does not actually depend on xp

because x) and x3 are jointly Gaussian. -

Equation 3-97 can also be written as

PR |
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E([x; - %1(»))2)x2)"1 < [M(x)~ R + 71 . (3-100)
Jensen's inequality states that
$(EC(E)) < E(¥( D)) (3-101)

if ¢ is a convex function [10]. Note that e = E'l is convex if £ > 0.

Thus, we can apply Jensen's inequality to obtain

E(®)" cE(gl . (3-102)
If £ = EC([x) -%X;(y)]12|xp) we obtain
E(lx; - 1M1~ < (1) » qlIg7l + (3-103)
- -
where
I = E(ri(x2)) . (3-104)
This gives the rate distortion bound .‘ 1
E([x; - x1(y)]2) > ([no Rl + 1)) (3-105)
where - v;
I} = EC([h(x],x3) - E(h(x],x2)|x2)]12) . (3-106) : '1
Note also that
- 1
ry = E(h(xj,x2)2) - EC[E(h(x],x2)|x2)12) . (3-107) ]
Equation 3-105 1s our basic RDB for the vector state, scalar measurement
case. Note that x2 could be a Gaussian random vector. Thus, for

Y = h(X],X2,0005Xp) + Vv (3-108)
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- -

one has the same bound Eq. 3-105 except that

T} = EC[h(X] ,X2,e00,Xn) = E(h(X],X2,000,Xn) |X2e0exn)}2) .  (3-109)

T T T D)
| - N ;

3.4.2 Computation of the Rate Distortion Bound

To compute the RDB of the previous subsection it is necessary to compute
. a the expression Ty in Eq. 3-106 and 3-107 (or more generally, Eq. 3-109). It
. is possible to do this in much the same way as we did in subsection 3.3.l.
Specifically, if h belongs to the class A, of functions defined in subsection
P | 3.3.1 (Eq. 3-13), then we can compute TI'j in closed form.

Suppose that x) is a random n-dimensional vector, x3 is a random

mdimensional and x),x7 are jointly Gaussian. Then we know
E(x),x2) = a + Bx) (3-110)

EC[x1-E(x] [x2)] [x] - E(x1|x2)1T|x3) = ¢ (3-111)

for constant vector a and constant matrices B, C. 1If

#(u,x1) = exp(ulxy) (3-112)
then
E(#(u,x1)x2) = ¥(u,x2) (3-113)
where
w(u’xz) - exp(uTa + uTsz +1 uTCu) . (3-114)
2

where u is an n~dimensional vector of complex constants. Note that for any

constants a, B, C, u the function Y u,x72) of x3 belongs to Ap. Thus, if

P
£(x)) = § Ci Dx®(uk,x)) (3-115)
k=1
-~
3-34
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as in subsection 3.3.1 (Eqs. 3-32 and 3-34), then
P
E(£(x3)}x2) = ) Cx Dk Wug,x2) . (3-116)
k=1

In other words, 1f f(x;) belongs to A,, then E(f(x1)|x2) belongs to Agy.
Consequently, if h(x],x2,...xp) belongs to the class A, of functions,
then E(h(x),X2+44,X)|%X2,...%n) belongs to Ap—) and so does [E(h(xX},%2,...Xp)|

%2,.04Xp)]2. Thus I'} in Eqs. 3-106, 3-107, and 3-109 can be computed in

closed form.

3.4.3 Examples of the Rate Distortion Bound

3.4.3.1 Linear Measurement

Suppose that h(x) = hex is linear (h is a row vector and x is a column
vector). Suppose that x has been partitioned into a one-dimensional component

x] (which we want to estimate) and an (n-1) dimensional component x3.

Yy = hyex) + hpexp + v (3-117)

is the measurement equation. The mean and covariance of x are given by

E(x)) = x) (3-118)

E(x3) = x3 (3-119)

E([x) - %112) = qq) (3-120)

EC([x; - x1] [x2 - x2]1T) = Q)2 (3-121)

E([x - x2] [x; - x1]) = Q21 (3-122)

E(lx; - x2] [x2 - x21T) = Q22 (3-123)
3-35
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The conditional mean and variance of x) given x2 are
E(x1|x2) = X1 + Q2 Q227! [x2 - %] (3-124)
EC[x) - E(xp[x2)]12{x2) = Qu1 - Q12 @27 Q21 (3-125)

Thus, we find that

Q = Q11 - Q2 27! Q) (3-126)

and

F=Tp(x) =h2 -q . (3-127)

The corresponding bound is
RDB = (h2r"1 + q~1)-1 (3-128)
= (h2R71 + [Q)) -Q12 Q227! Q231711 (3-129)

Note that the choice of the component x3 is somewhat arbitrary, and one could
try to select it to make RDB as large as possible. For example, one might

T
choose x3 independent of x) so that Q] = Q12 = 0., Thus, the largest RDB

bound obtained by choosing xy independent of x) is in the linear case
RDB = (hj2R~! + q;;"L1 . (3-130)

This is generally smaller than the minimum mean square error. We will examine
this more closely in subsection 3.4.4 where we compare the RDB with the CRVB.
Let us remark that it is possible to develop a tighter rate distortion bound
that gives the minimum mean square error exactly. However, this bound appears

to be difficult to compute in nonlinear problems.

1
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3.4.3.2 Nonlinear Measurement

Congider the simple example
y = xlz + X2 + v » (3"131)

where x) and x3 are independent Gaussian random variables with variances Q)

and Q7 respectively. Then Q) = Q1}, T} = 2Q132 and the RDB is
RDB = ([2Q11]1r"1 + q"D)"1 . (3-132)

3.4.4 Comparison to Cramer—-Rao Van Trees Bound

3.4.4.1 Examples
The following examples show that neither CRVB < RDB nor RDB < CRVB in

general for vector states and scalar measurements. Suppose that X} and x7 are

independent Gaussian random variables with respective variances Q1) and Q22.

hix ,x ) =x +x
1 2 1 2

This is an example of linear measurements. As we found above, the RDB is
RDB = (R! + q;;~)-1 . (3-133)
The CRVB is also the minimum mean square error for this case and is given by
CRVB = (R°! + Q)71 - R2[Qp~! + x-1}=1)-1 | (3-134)

Thus, in this case we always have CRVB » RDB. Figure 3-10 shows the two

bounds versus R for Q)] = Q22 = 1.0.

2
h(xl,xz) x] + %,

We computed the RDB above:

3-37
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RDB = ([2qp;)R°! + q;"D)°1 . (3-135)

The CRVB 1s easily found to be
CRVB = ([4Qp]R"1 + Q"1 . (3~136)

Thus, in this case we always have RDB > CRVB. Figure 3~11 shows the two

bounds versus R for Q) = 1.0.

3.4.4,2 Comparison at Low Signal-to—-Noise Ratios

We can prove a general asymptotic relationship between CRVB and RDB as
R+, This relationship is similar to the one we proved in subsection 3.3.3.4.
Let x be partitioned into comronents x) and x2, and define Qij, Q12, Q21, and

Q22 as in subsection 3.4.2.1. Recall that

QL = Q11 - Q12 Q227! Q21 (3-137)
and
rp = EC[h(x),x3) - E(h(x],x2)|x2)]2) . (3~138)
The RDB is simply
RDB = ([rQ;~lIrR"1 + q~1)-1 . (3~139)

The CRVB gives a lower bound on the error covariance matrix. This matrix

bound is

3h! 3h

x X

B = (Q"l + R] -1

E( ) ) (3-140)

The CRVB for the x] estimate is the B)) element of the matrix B. For large R

we can approximate B by
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ohT
ax

B = Q - R-1QE(

ah)Q + O(R"2) . (3-141)
ox

1f Qi = 0, Q23 = 0, then we have to first order in R1:
sh
CRVB = Q] - R71011'2<13;-12> + O(R"2) (3-142)
1
Equivalently, we have

ah
CRVB = ([E([S;-]Z)]Rfl + Q11”1 + o(r-2))-1 (3-143)
1

to compare with Eq. 3-139. From the scalar state inequality Eq. 3-76 we have

3h
Q1! - I(x2) < E([—]2|x3) (3-144)
ax]
and consequently,
oh
Q~in < E([—12) . (3-145)
ax}

We will assume that the partition xj3,x7 of x has been chosen so that x; and xp

are independent (i.e., Q12 = 0, Q21 = 0).

Then we see that Q) = Qi) and
CRVB < RDB + O(R™2) . (3~146)

That is, there is a term O(R'z) which converges to 0 as fast as R~2 when R4,
and the CRVB is larger than RDB by at most 0(R"2). Note that if h depends on

x] in a nonlinear way, then we must have CRVB < RDB for sufficiently large R.

3-41
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This is the case in the example h(xj,xs) = xj2+xp above, In the linear exam-
ple h(x),x2)=x;4x3, one can see from Eqs. 3-133 and 3-144 that CRVB exceeds

RDB only by a term of order R~2

3.4.5 Rate Distortion Bound for Vector State and Vector Measurement

If an m dimensional vector measurement is taken, the results of subsection
3.4.1 change as follows. The earlier result Eq. 3-19 for the scalar state case

implies
EC[x; - x1(y))2]x3) > Q (det(T1(x2)R"1 + Ip))-1 (3-147)
where I, is the mxm identify matrix, Q) is given as in Er. 3-99 and
T1(x2) = E([h(x],x2) = ECh(x1,%2)|x2)] [h(x1,x2) = EC(h(x},x2)]x2)]1T|x3)

(3-148)

Thus we have
EC([x) - x3(y)]2) >Q; «{E(det(Tj(x2)R"1 + I} . (3-149)

The right-hand-side of Eq. 3-149 is computable in closed form if each component
of h belongs to the class Ap. Unfortunately, this computation appears to be
difficult in general, and further development is required to make the RDB use-

ful for the general vector state, vector measurement case. However, if the

measurement vector consists of N identically distributed, conditionally inde-

pendent scalar measurements, then RDB is given by

RDB = ([NF)1Q;~-LlIR") + q~1)-1 (3-150) o
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3.5 CONCLUDING REMARKS

3.5.1 Summary

In this report we have described how to compute analytically rate distor-
tion bounds of mean square error for static nonlinear estimation problems of
the form

y = h(x) + v (3-151)
where X and v are Gaussian distributed. Specifically, we obtained a lower

bound of

E([x; - x3(y)]2) (3-152)

where x; is a scalar component of x. We showed that the rate distortion
bound is asymptotically tighter than the Cramer-Rao—-Van Trees bound in the
limit as the noise covariance R becomes unbounded (i.e., as signal-to-noise
ratio approaches 0). We illustrated the rate distortion bound and its com—

parison to the Cramer—-Rao-Van Trees bound using a number of simple examples.

3.5.2 Conclusions
Based on present results, the rate distortion bound offers a better

approximation of mean square performance in the high measurement noise regime
than the Cramer-Rao-Van Trees bound. Furthermore, the rate distortion bound
requires little, if any, more computation than the Cramer-Rao-Van Trees bound.
Thus, the rate distortion bound appears to complement the Cramer-Rao-Van Trees
method in the nonlinear, high noise regime where the latter bound is known to
give overly optimistic approximations of the true mean square error. However,
in order to make the rate distortion theory useful for the dynamic nonlinear

estimation problems of tracking, we must develop our current results in two

significant ways:
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1. it is necessary to obtain a simple rate distortion bound in
the case of a vector state and a general vector measurement;

2. it is necessary to derive a recursively computable bound for
dynamic estimation problems.
3.5.3 Other Work
Zakai and Ziv [11] first applied rate distortion theory to mean square
performance analysis of nonlinear filtering problems. The results of [11]
were restricted to a special class of continuous—time processes. Galdos [12]
extended these results to general vector processes, both in continuous and
discrete time. 1In this section we have derived some preliminary bounds on
individual component errors as in Eq. 3-152, The results of [12] give bounds
on the sum over all component errors
n
Y OE(xx - xp(9)]12) . (3-153)
k=1
We believe the approach here, based on our earlier work [13],[14], will yield
a more accurate estimate of mean square estimation error. However, until re-

sults of this section are extended, we can make no comparisons with [11],[12].

3.5.4 Further Investigation

Other directions for further investigation exist beside the two necessary
extensions noted in subsection 3.5.2 above. One direction would extend the
bounds to problems for which x is an unknown, non-random parameter (or a mix-
ture of random and non-random parameters). In [1] we found that a large class
of tracking problems can be modeled by a state process which consists of an
unknown deterministic component and an unknown, Gaussian distributed random
component. Rate distortion theory for nonstatistical sources (& - entropy

methods [4) may allow us to derive such results.
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Another direction is to study the effect of architecture constraints,

such as preprocessing of measurements, on tracking estimation performance.
We investigated this problem in [1] using Cramer-Rao-Van Trees methods. A
rate distortion approach, based as it is on info mation theory, would provide

a more general, more accurate method of analyzing architectural constraints,
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SECTION 4

AMBIGUITY PERFORMANCE ANALYSIS

4,1 INTRODUCTION

Ambiguity analysis ([7],[15] Chapter 10) is an attempt to understand the

global nature of a parameter estimation problem. This is in contrast to Cramer-

Rao methods which provide a more local analysis of estimation performance.
The Cramer~Rao lower bound on mean square estimation error will be an accurate
estimate of true optimal performance provided that it is possible to acquire
or maintain an estimate near the unknown parameter at all. The local problem
(addressed by the Cramer-Rao method) is to analyze accuracy given acquisition;
the global problem (addressed by ambiguity analysis) is to analyze the acqui-
sition performance.

The ambiguity approach can be formulated as follows. Suppose one wishes
to estimate an unknown parameter x given a measurement y. Let x denote the
maximum likelihood estimator of x which depends on y and consider the mean

square estimation error
-~ n -~ -~ ~
Ex{(x - x)2} = kzo Ex{(x - x)2|xeRri} Py {xer]

where Ex{°} and Px(-} denote the expectation and probability given that x is

the true value of the parameter; and R, R,, +.., R_are ntl regions subdivid-
0 1 n

ing the x parameter space. Approximate Ex{(x - ﬁ)zlienk} by ek2 and approxi-

mate PX{QCRk} by Pe Then the mean square error is approximated by

4-1
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xl(x- )7} = T ek m

For example, assume that the true parameter xeR0 and let 802 be the Cramer-Rao
bound for the problem. If k # 0, choose a typical xyeRy and let g2 = (x - xk)z.
Approximate Px{QeRk} by the following hypothesis testing problem. Let in(y)
be the x; that maximizes ka{y} and let pg be Py {XpeRy}.
Can we show rigorously that
3 2 < )2
kzoek * px —> Ex{(x - %)?}
as the number nt+l of regions increases and the size of the regions decreases?
Can we estimate the size of the error for a given n and choice of regions Ry?
In this section we provide detailed convergence analysis for a partic-
ular sequence of approximations for the calculation of the error variance in
a maximum likelihood estimation problem. We restrict our attention here to a
scalar problem. While several of the detailed calculations we perform do use
the scalar nature of the problem to allow us to write down very explicit for-
mulae, the general nature of the analysis can be extended (this would, how-

ever, involve the determination of several additional estimates to replace

the closed-form expressions available in the scalar case).

4.2 PROBLEM FORMULATION
We consider the problem of estimating a scalar parameter x which is known

to take values on the interval [0,1]. We have available the scalar measurement
y = h(x) + v (4-1)

where v is a Gaussian random variable with mean 0 and variance l. We also

assume

—

-

t
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h(0) > 0 (4-2a)
0 < h'(x) <M<« for all xe[0,1] (4-2b)
and h(x) can be expanded in a series around any point ac[0,1]:
dh
h(x) = h(a) + ;— (a)[x = a] + R(x - o) (4-3)
X

where R(x - x;) = o((x - xy)2). Note that Eq. 4-2a is a trivial assumption
since we can always add a constant to h. Also note that the monotonicity
assumption (Eq. 4-2b) simply avoids the possibility that h(xl) = h(xz) for
any x,, XZE(O,I I.

The problem with which we are concerned is the following. Suppose that
the true value of x is x,. We wish to calculate (or more precisely to obtain

0

a sequence of approximations to)
E[(x - xo)zlx = xo]
where x 1is the maximum likelihood estimate. That is, let

2(x) = yh(x) - i h(x) 2 (4-4)

Then
X = arg max 2(x) (4-5)
X

We begin with several preliminary calculations,

Computation of the Distribution Function for X

Let us rewrite Eq. 4—-4 using Eq. 4-1 and the fact that x = X,

1 ‘
2(x) = h(xo) h(x) + v h(x) - E h(x) 2 (4-6) !

4-3 '
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Consider the derivative of Eq. 4-6
2'(x) = [h(xp) + v - h(x) Jn’ (x) (4-7)
Note that, thanks to Eq. 4-2b 2'(x) = 0 if and only if
v = h(x) - h(xo) (4-8)

Thus, again thanks to Eq. 4-2 we see that

2'(x) > 0 for all xe[0,1] 1if v> h(1) = h(x,) (4-9a)
£'(x) <0 for all xe[0,1] 1f v < h(0) - h(x) (4-9b)
Thus
Prob(x = O|x = x,) = Prob(v < h(0) - h(x)) (4-10a)
Prob(x = 1|x = x ) = Prob(v > h(1) - h(x,)) (4-10b)

1f ve(h(0) - h(x,), h(1) - h(xo)), x will be the value of x for which 2'(x) = 0,

i.e., the value for which Eq. 4-8 is satisfied. Thus,

Prob(0 < x < alx = xo) = Prob(h(0) - h(x;) < v< h(a) - h(xo))

h(a)-h(xo) (4-11)
-./. N(v; 0,1) dv
h(O)-h(xo)
where
N(v; 0,1) = e v2/2 (4-12)

NG

Thus the probability density function for x on [0,1] is

4=4

T T T Y Ty
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d A
P.(a) = — Prob(0 < x € a|x = xo)
X da

(4-13)

= N(b(a) - h(x); 0,1)h'(a)
Note that in this case we obtain a formula for the error variance

E[(x - xo)zlx = xo] = xo2 Prob(v < h(0) - h(xo))

+ (1 = %,)2 Prob(v > B(1) - h(x))

k 1( ) h' (o)
+ X, - a exp { -
o \Z

N |-

(h(o) - h(x))2}da

E In the sequel we develop a sequence of approximations to this quantity moti-

vated by our desire to develop methods that can be applied to more complex

problems.

The Cramer—-Rao Bound and the Ambiguity Function

For this problem

N |-

plylx) = (y - h(x))zf (4-14)

1. g
exp § -
VZn
and it is a straightforward computation to verify that the Cramer-Rao Bound is

-1

32 0 ply|x) 1
CRB (xo) = ~CE ) x = x, = ( dhtroy )2 (4-15)
dx
The ambiguity function in this problem is
%
A(xl,xz) = h(xl)h(xz) (4-16)

bt ol b A




e -
b o ALPHATECH, INC.

Note that
E[:l(x)lxo- x:] = A(x,x ) - 1 A(x,x) (4-17)
k0 2
1 Cov [z(xl),l(xz)] = A(x,,x,) (4-18)
and
-1
32 1
- 3;5 A(x,xo) - E A(x,x) = CRB (x,) (4-19)
X = X

Thus the Cramer-Rao bound is seen to depend explicitly on the curvature of

E[2(x)|x = xo} at the location of its peak, i.e., at x = x..

4.3 CONVERGENCE ANALYSIS

We now construct a sequence of approximations indexed by the integer N.
Essentially what we will do is to divide the interval [0,1] into subintervals,
most of which will be of length 1/N. There will, however, be one interval

centered at the true value X, that will be larger. Specifically, let

1
ST (SRR S

W W

Assuming that N is large enough so that x, - 1/NN > 0, define

IL,_IN = {0} (4-21a)

N i i+1 1
IL,i = Iy A (Xo- . , 1-0' l’ ssey L(N)

(4-21b)

where a A b indicates minimum of a and b and where

PUNPY
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L(N) = l-ux0 -VN - :’ (4-21¢)

(Here f-i-] is the smallest integer greater than or equal z). Note that

L(N) = O(N). Similarly assuming that X, + 1/YN < 1, define

Ig,-1N = {1} (4-22a)
1 N-4i-1 N-=-1
IR,iN = l:( x, + ) ' - T s 1=0,1, eee, R(N)
VN
(4~22b)

where a V b indicates maximum of a and b and where

R(N) = l-N -1 - N, - \[u—-] (4-22¢)

Again R(N) = O(N). What we have done is to partition [0,1]) into disjoint
sets. There is one, larger central set I.N, and the two endpoints I, —N and
Ig,-1N. The remaining sets to the left of I N are of the form (1/N, i+1/N]
except for the one bordering on IcN which 1s clipped off so that it doesn't
overlap. Similarly the sets to the right of I.N are of the form [1/N, i+1/N)
except for the one bordering on ICN which is clipped off so that it doesn't
overlap.

Since these sets don't overlap, we have the following equality

L(N) . . .
E[(x - x,)2a = x,] = % E[(x - x0)2|x = x, xelpsN]pe(xer i¥|x = x,)

0
1=-1
R(N) . . .
+ ) E[(x- x0)2|x = x, xelpi N JPr (xelpy |x = x,)
i=-1

+ E[(i - xo)zlx = Xg» ercN]Pr(feIchx =X )
(4-23)

4-7
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Our approximate method for evaluating the left—hand side of Eq. 4-23 is based

on obtaining approximations for each of the terms on the right-hand side. To

do this, we proceed by defining the following discrete set of points

V=0

§4N = center point of IL’iN , 1 =0, eeo, L(N)

X0

-Y_IN = ]

Note that

(4-24)
YiN = center point of IR,iN , 1 =0, ..., R(N)
1
GON - 5_1N ZJ
N N 1
61+1 - 61 ﬁ > i = 0, seey L(N) - 2
1
51+1N - 61N 0(;‘) , 1=1L(N) -1
sy o(' - )
X0 ~ OL(N) pg—
‘VN
(4-25)
N ol 1
YR(N) " ~ X0 _)
'\JN
N N 1
Yi© T Yi+l Y - » 1=R(N) -1
vV - vieV
=1N - vV

- > 1.0, ecey R(N)""
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Consider the hypothesis testing problem in which we assume that we know
that x takes on one of the finite set of values in Eq. 4-24, and suppose that
we use the maximum likelihood criterion for choosing our estimate from this

finite set. Let

pLiN(x,) = Prob(choose §;N|x = xg) » 1=-1, oo, LN (4-26a)
ch(xo) = Prob(choose xplx = x,) (4-26b)
PriN(xy) = Prob(choose vsN|x = Xg) » 1=-1, «oo, RV (4-26¢)

Then our approximation to Eq. 4-23 is

) L(N)
[ (R xg)eln x| L (6 52 o M)

R N 2, N
<+ - -
12_1 (Yi %) "Rt (xo) (4-21)

where
1 dh
P(N) = E‘:vz |v] < - ™ (xo):l (4-28)

We now proceed to estimate the errors in the various terms and to show that

Eq. 4-27 converges to E[(§ - xo)zlx = xo] as N » =,

4-9
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The Terms E[(;E - xo)zlx = Xg» §£IL,1N] and E[(i - xo)zlx = X4 ieIR,j_N]

I u Note first that
E[(x - xo)zlx = X4 ieIL’..lN] = (&4N - xo)2 (4-29a)
l - E[(i - xo]zlx = xo, ieIR’_lN] = (Y-IN - x0)2 (4-29b)

Furthermore for 1 > 0

! B[(% - x)2Ix = x,, %erpeV]
(4-30)
-f (a- x0)2 p.(afx = Xy xelpsN) da
, . N x
p | Tps
where
. pi(alx - xo)
i . pi(ulx =X, erLiN) - (4-31)
' _[ P~(a|x = x,)
IV ¥ ’
i a and p.(a|x = xo) is given in Eq. 4-13., We now see that the integral in Eq.
X
4-30 is sufficiently smooth over the entire interval, so that we may approxi-
mate it as
» _ (84N - xn)2 p;(Gile = X0, xelpgN) = Length(Ip4N) (4-32)
1
The error introduced in this approximation is 0 N—2 « To see this, examine
" Fig. 4-1. "]
i
. i
' - i

4-10
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Figure 4-1, 0(;]—2-) Approximation Error

The integral to be evaluated is the area under the solid curve, while Eq.

4-32 equals the area under the dotted curve., Let

d -
K = sup sup - [:((1 - x0)2 p,(a|x = xo, XEILj_N)] '
i a | do X

It is easy to see that K < » and that the magnitude of the difference between

the areas under the solid and dashed curves in Fig. 4-1 is bounded above by

K 2
5 Length (ILiN ):'

1
which, from Eq. 4-21 is O(N—z ). Finally we note that by the same type of
argument
1 -f p.(alx = X0 ileiN) da
x
Ing

- 1
- p.(6:N]x = x_, %l q¥) x Lengen(14N) + o(——)
x 0 N2

(4-33)

4-11
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Combining Egqs. 4-30 through 4-33 we see that

- - 1
E[(x - xo)zlx = X, xel iN] = (&N - xy)% + O(E.Z)

(4-34)
i-= 0, XXE) L(N)
In an analogous fashion we can show that
- - 1
E[(x - xg)2|x = x, xelpgN] = (yN - x )% + 0(—)
0 0 N2 (4-35)

i= 0, cesoy R(N)

The Term E[(x - xo)zlx =%, xeI N]

Substituting Eq. 4-3 into Eq. 4-6 we obtain

2 2
2(x) = i h(x0)2 - -12~ (d—}-1 (xo)) [x - xo] _ & [xo)[x - xolR(x - xo)

dx dx
1 2 | dh
-3 [R(x- xo)] + vh(x0)+ v~ [x - x0]+ v R(x - xo]
(4-36)
Assuming that stcN we have that
de(x) dh 2, dh . -
0 = ™ = - (;; (xo)) [x - xo] + v -(; (xo) + Al(X) + VAZ(X)
(4-37)
where
- dh - - d A
8,(x) = - = (xo)[R(x - xo) + (x - xo] ™ R(x - xo)]
. d R (4-38a)
- R(x - xo) ; R(x - xo]
- d -
8,(x) = = R(x - x,) (4-38b)

4-12
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and
k xil"’n“ (X)I ) o(;) (4-39a)
xi}"’N"‘ (B} =0 (V_;:) (4-39b)

From Eq. 4-37 we see that

R dh -1 dh =2 . .
exym | = (x,) | v+ = (x,) 8,(R) + v (%) (4-40)

Also we are assuming

A 1
2= x| < ——
‘VN
Combining Eqs. 4-39 and Eq. 4-40 we can deduce that the implied constraint
on v is
1 dh (1 )
v| < ~ (x,) + ol = (4-41)
vl — (x,) + o
Thus

dh
d—- )] NS/ 2

(4-42)

1 1
The O (—;—/—;) comes from the 0(;]) term in Eq. 4-41 which implies that the
N
actual limits on v can differ by a term of order 1/N. Thus the probability

mass in the interval between

4-13
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1
and the right-hand side of Eq. 4-41 is 0(;), and

2
\[,IT %:(XO) +°($)J \l_ ax ( ):l 3/2)

Finally, using Egs. 4-39, 4-40, and 4-42 we obtain

El:(:? = x0)%|x = x, ’zelc"] B(N) [_ (x )] 3/2)

The Probabilities in Eq. 4~23

(4-43)

(4-44)

Under the assumption that x is one of the points in Eq. 4-23, the maximum
likelihood decision rule is to choose x corresponding to the largest among the
values 2(x) evaluated at these points, Note next that under the assumption

that X,™ X

$(850Y) - 2(6Y) = h(xo)[h(aﬁm ; h(sm:]
- § |:h(51+1N)2 - h(51N)]2 (4-45)

+ v[h(sml“) - h(éi"):l

Thus using Eq. 4-2b we see that the sign of 2(6;4]1N) -~ 2(64N) is the same as

the sign of
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1
n(x,) - 5 [h(51+1“) + h(51“)] +va-ugN+ v

Similarly the signs of z(xo) - (L)), 2(wm)N) - 2(x,), and £(v1V)

= 2(v441N) are the same as the signs of

M) = 3 | ey

. h(smn“)] £ 8w+ v

1
h(x,) - 5 l:h(YR(N)N) + h[xo]] + v A ~uN+ v

2

1
h(x;) - = [h(YiN) + h(Y1+1N):| + v AN+ v

Again using Eq. 4-2b) we have that

(4-46a)

(4-46b)

(4-46c)

(4-46d)

br,=18 < upoN < oo < nan-1Y € vl < ueaV <wp rawy-1N < ool <g ¥

and from this we can deduce that

pL,-1N(x,)

oL,iN(x,) =

oL, L(N)N(x,) =
pCN(xo) =

DR,R(N)N =

(4-46e)

the quantities in Eq. 4-46 are as follows:

Prob(v < uL,_lN)

PrOb(uL,i-lN < v< “L,iN)

i = 0, 1, seey L(N) - 1

Prob(u,,,(n)-1" < v < wegV)

Prob(ue)N < v < peoV)

Prob(ucoN < v < wg r(w)-1V)

4-15

(4-47a)

(4-47v)

(4=47¢c)

(4-474)

(4-47e)
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PR, 1" = Prob(ug,1N < v < 1g,1-1V) (4=47£)

i = 0, es oy R(N) - 1
PR,-1 = = Prob(v > g, -1N) (4-47g)

We now compare these terms to the terms to which they correspond in Eq.

4-23. First, note that

1 1
pL,-1N(x,) = Prob(choose 0|x = xy) = Prob(\a < 5 l:h(ﬁ) + h(O):l - h(xo))

(4-48a)
while
Prob(ﬁeIL’_lle = xo) = Prob(v < h(0) - h(xo)] (4-48b)
Given Eq. 4-2b we have
. 1
Prob(xelp ~1N|x = xo) = pp,-1N + 0(;’-) (4-49)
Similarly
~ l
Prob(erR’-1N|x =x )= pR’_.lN + 0(5) (4-50)
Next note that for 1{ = 0, 1, ..., L(N) - 2
1 i+3/2 ) (1+1/2 )
N -
u + h - hix
L.1 2 [( N N (x,)
oL, 1N(x,) = fN(v; 0,1) dv = fN(\); 0,1) dv
1 1+1/2) (1-1/2)
N -
1) G + h| ——— - hx
L,1-1 ; l:( S . (x)
(4-51)

4-16
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while from Eq. 4-11 for 1 = 0, 1, ..., L(N) - 2

h(fﬂ)-h(xo)

Prob(ieIL’1N|x = x,) =/ N(v; 0,1) dv (4~52)
i
JERIH

Using Eq. 4-3 (with a = i/N) we have that

) (S ] () oll) e
() () ] () o) e

Thus

- 1
Prob(xely, iN|x = x,) = pL,iN(xo) + O(N—Z) » 1=0,1, «oo, L(N) - 2
(4=54)

Similarly

- 1
Prob(xelg iN|x = xo) = QR,iN(xo) + 0(—) , 1=0,1, oo, R(N) = 2

N2
(4-55)
Now for 1 = L(N) - 1

1 L(N)-1/2

- N e -

[ (o) (2222) Ty
oL, L(N)-1N(x) -[ N(v; 0,1) dv (4-56a)

1[ L(N)~1/2 L(N)-3/2

- h(———-)+h(——-—) -h(x,)

2 N N 0

4=17
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while

Prob(isIL’L(N)_lle = xo) = j[ N(v; 0,1) dv

. (m:)-l)_h[xo)

N 1 L(N) 1
w1 [ 424 (5, )

Using Eq. 4-3 we have

;[ (aon) s (5522 [0 (52) o)

and furthermore

so that

- 1
prov(iety, Lan-11x = xg) = o, L0-1(xg) + o[ 5 )

and similarly

- 1
Ptob(erR’R(N)_1N|x = xo) = PR,R(N)-1 (xo) + 0(;‘)

Next we have that

3 [ Megkntanan J-nts,)

%:L(N)N(xo) =/ N(v; 0,1) dv

% [h(6L(N)N)+ h(gi)-ﬁ:—-l-/-z-)]—h(xo)

4~18

(4-56b)

(4-57)

(4-58)

(4-59)

(4-60)

(4-61)

.|

o
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and
1
h (xo - )-h(xo) -
_i Vv »
Prob(xely (M) |x = x;) = / N(v; 0,1) dv (4-62)
L(N)
JERIRICh -
A similar argument to the preceding ones yields
: 1 ’
Prob(xely 1(n)Nix = xo) = PL,L(N)N("O) +0 (—W_——) (4-63)
and similarly
) 1 »
Prob(xeIg g(n)N|x = xo) = F’R,R(N)N(xo) + O( = ) (4-64) .
Finally
! ’
5 [h(xoﬁh(m(n)“)]-h(xo)
ch(xo) =-/ N(v; 0,1) dv (4-65)
] ’
3 I:h(xo}*h(GL(N)N):l‘h(xo) ‘
and
»
h(x + — ) h(x,) |
~h(x
0 W 0 :
Prob[ieIcN]xexo) =[ N(v; 0,1) dv (4-66) ’
SORE
x, — —— )-h(x
0 W— 0
®
19 .‘
]
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Using Eq. 4-57, the corresponding expression for yR(N)N and Eq. 4-3 we find

that
[ nlxg) + oo™ ) | = (- =) vo(==) e
- - X, = — S -
2 | xo L(N) B 0 W—- N
. -h(x ) + h(yrm)¥ )_ - h(x b —_ ) +0 (—L-) (4-68)
2 L 0 _ 0 \ﬁ7~ N
and thus
~ 1
Prob(xeI.N|x = xo) = ch(xo) +0 (—VN:-) (4-69)

Combining the estimates 4-35, &4-44, 4~49, 4-50, 4-54, 4~55, 4-59, 4-60,

‘[;_ ) and

4-63, 4-64, 4-69, and the facts that P(N) = O (

B ) 1

E|l (x - x,)%|x = x,,x N|a= o(—) 4-70
L--(x xo) [x = x,,xelL(N) i . ( a)
[ . ) . N 1)

E - = = 0 - 4-70b
.-(x xy)2|x = x, XeIR(N) i (N ( )

we conclude that

El:(; - x,)2Ix, = u:] - ¥(x,) + o(%) (4=71)

where G(xo) is the approximation in Eq. 4-27.

4-20
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g

4.4 CONCLUSION

In this section we have studied the ambiguity analysis method of approx-

'B imating mean square estimation error for a simple nonlinear parameter estima-
; ) tion problem given by Eq. 4-1. We saw that the method outlined in subsection
- 4.1 converges to the true mean square error of the maximum likelihood estima-
% - tor and that the error is inversely proportional to the number of regions used

[ to subdivide the parameter space. Note that the central region Ro for which

——

the Cramer-Rao bound was used to estimate Ex{(io'x)2|£€Ro} was proportional
' to (‘VN -1) in size. The remaining regions were proportional to N~! in size.

For large N this means that N is of the order of the number n of regions

1
subdividing the parameter space. Thus, the approximation error 0(:-) is
N
1
also 0( -) .
n

Further work is required to determine how the magnitude of the measure-
ment noise (or equivalently, the signal-to—noise ratio) enters into the approx~
imation error. This result will clarify how large the number of regions needs
to be for a given signal-to-noise ratio. The convergence analysis also needs
to be extended to the general case of vector states and measurements and to

the case where a measurement process is observed. The order of the approxima-

tion error is expected to remain the same in these generalizations but a more
precise idea of the size of this error would help us understand the computa-
tional feasibility of applying the ambiguity analysis method to analyze the

performance of complex estimation problems. X

4-21
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SECTION 5

CONCLUDING REMARKS

5.1 GENERAL SUMMARY

The research described in this report has investigated methods for pre-
dicting performance in passive tracking problems. Our objective has been to
develop performance prediction methods that are computationally efficient,
applicable to realistic passive tracking models, and accurate. In our pre-
vious work [1] we developed a Cramer-Rao method to obtain a method that was
computationally efficient and applicable to a large class of mathematical
models. In Section 2 of this report we have shown that this method is easy
to apply to more realistic models than the ones used in [1]. Specifically,
we have used the method to study the effect of uncertain, unstable source
frequency and the effect of the presence of a broadband source component on
tracking accuracy.

In some nonlinear estimation problems of low signal-to-noise ratio,
Cramer-Rao methods may predict performance much better than the optimal pro-
cessing algorithm can actually achieve. This disadvantage of Cramer-Rao meth-
ods motivated us to investigate performance prediction methods which would
be more accurate when the signal-to-noise ratio was low, but which are still
efficiently computable for a large class of realistic models. Sections 3 and

4 focused on this problem.

i
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Section 3 investigated an analytical (i.e., not requiring simulation)
method based on rate distortion theory [4). This method shows great promise
because it is efficient to compute for a large class of nonlinear problems
and it is better than the Cramer~Rao method when signal-to-noise ratio is
low. However, the method requires further development to make it applicable
to realistic dynamic problems.

Section 5 investigated a numerical method of performance prediction
often described as ambiguity analysis [7],[15]. This method is essentially
based on numerical computations rather than on analytical formulas. The
method can give an accurate performance prediction provided sufficient com~
putational resources are available. OQur investigation studied the relation-
ship between prediction accuracy and computational complexity for this method.
Further work remains to determine the precise effect of signal-to-noise ratio
on the relationship between prediction accuracy and computational complexity.
5.2 CRAMER-RAO PERFORMANCE ANALYSIS OF FREQUENCY INSTABILITY AND

BROADBAND SIGNALS

The method developed in [1] was used to study two effects: the effect
of an initially uncertain and randomly unstable source frequency, and the
effect of a broadband component of the source frequency. The random fre-
quency was parameterized by two variables, initial root-mean-square uncer-
tainty and rate of variation. The rate of variation (studied for .0l to 1.0
Hz/min) appeared to have negligible effect on both position and velocity
tracking error. Initial uncertainty had little effect on position tracking
error, but it did have a significant effect on velocity tracking error. When

the initial source frequency uncertainty reaches 1 Hz, the initial velocity
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tracking error is not substantially reduced until the source passes through
the sonobuoy field. This indicates that initial uncertainty concerning source
frequency can make the velocity tracking performance sensitive to source-
sensor geometry (i.e., good velocity tracking will depend more crucially on
good geometry).

The broadband source component was modeled as a simple stationary first-
order Markov process. The bandwidth of this process was fixed at 200 Hz
and the ratio of broadband to narrowband power was varied from 10~5 to 10%,
Increasing this ratio increases the total source power, and the position and
velocity tracking error decrease as a consequence. The decrease in tracking
error is comparable to the decrease in error with increased narrowband source
signal power studied in [1]. This indicates that broadband source energy is
comparable in value to narrowband source energy, and that the broadband com-
ponent of the source signal can be profitably exploited by an acoustic signal
processing system.

Many other realistic models can be analyzed using the methods of Section
2. However, before analyzing the performance of other realistic models of
passive acoustic tracking problems, we need to determine the degree of opti-
mism inherent in the performance prediction of Section 2. Sections 3 and 4
present one approach to doing this, namely by trying to develop more accurate
performance predictions with which to compare the methods of Section 2., It
is also desirable to compare these performance predictions to the performance
of actual algorithms. The methods of Section 2 suggest a processing algorithm
architecture that might realize the performance prediction in some cases (see

[1] for discussion).
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5.3 RATE DISTORTION PERFORMANCE ANALYSIS

In Section 3 we showed how to compute analytically rate distortion bounds
of mean square error for static nonlinear estimation problems with a Gaussian
distributed state vector and additive Gaussian noise. Specifically, we ob-
tained a lower bound of the mean square estimation error for any specified
component of the state vector. We showed that the rate distortion bound is
asymptotically tighter than the Cramer—Rao bound in the limit of low signal-
to~-noise ratio.

Based on these results we conclude that rate distortion offers a better
approximation of mean square performance in the low signal-to-noise regime
than the Cramer-Rao bound. Furthermore, our rate distortion bound requires
little, if any, more computation than the Cramer-Rao bound for the special
class of estimation problems of interest. Thus, the rate distortion bound
appears to complement the Cramer-Rao method in the nonlinear, low signal-
to-noise ratio cases where the latter bound is believed to give overly opti-
mistic performance predictions.

In order to make the rate distortion bound useful for dynamic nonlinear
estimation problems of tracking, we must develop our current results to sim-
plify the computations for large dimensional state and measurement vectors and

to obtain recursively computable formulas for dynamic estimation problems.

5.4 AMBIGUITY PERFORMANCE ANALYSIS
In Section 4 we analyzed the mean square parameter estimation error of
the maximum likelihood method using the ambiguity analysis method. We showed

that this numerical method converges to the exact mean square error as the
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number of discretization regions increases, and the approximation error is
inversely proportional to the number of regions used to subdivide the param—
eter space,

Further work is required to determine how the signal-to-noise ratio quan-
titatively affects the approximation error. This result would clarify how
large the number of discretization regions need to be for a given signal-to-
noise ratio. The convergence analysis also needs to be extended to the general
case of vector states and measurements and to the case where a measurement pro-
cess is observed. The order of the approximation error is expected to remain
the same in these generalizations, but a more precise idea of the size of this
error would help us understand the computational feasibility of applying the

ambiguity analysis method to estimation problems,
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